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Manning Equation - Open Channel Flow Calculations 
 

 Harlan H. Bengtson, PhD, P.E. 
 
 

 COURSE CONTENT 
 
 
1.    Introduction 
 
The Manning equation is a widely used empirical equation for uniform open 
channel flow of water.  It provides a relationship among several open channel 
flow parameters of interest: flow rate or average velocity, bottom slope of the 
channel, cross-sectional area of flow, wetted perimeter, and Manning roughness 
coefficient for the channel.  Open channel flow takes place in natural channels 
like rivers and streams, as well as in manmade channels like those used to 
transport wastewater and in circular sewers flowing partially full. 

The main topic of this course is uniform open channel flow, in which the 
channel slope, water velocity and water depth remain constant.   This includes a 
variety of example calculations with the Manning equation and the use of Excel 
spreadsheets for those calculations.   

 

 
 

Figure 1. Bighorn River in Montana – a Natural Open Channel 
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Image Source:  National Park Service, Bighorn Canyon National Recreational 
Area website at:  https://www.nps.gov/bica/planyourvisit/bighorn-river-in-
montana.htm  
 
 
 

 
  

Figure 2.  Irrigation Canal Branch in Sinai – A man-made open channel 
 

Image Source: Egypt-Finland Agric. Res Proj 
 
 
 
2.      Learning Objectives 
 
At the conclusion of this course, the student will 
 

 Know the difference between laminar & turbulent open channel flow. 
 

  Know the difference between steady state & unsteady state open channel 
flow. 
 

 Know the difference between uniform & non-uniform open channel flow. 
 
 Be able to calculate the hydraulic radius for flow of a specified depth in 

an open channel with specified cross-sectional shape and size. 
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 Be able to calculate the Reynolds Number for a specified open channel 
flow and determine whether the flow will be laminar or turbulent flow. 

 
 Be able to use tables such as the examples given in this course to 

determine a value for Manning roughness coefficient for flow in a 
manmade channel. 

 
 Be able to use the Manning Equation to calculate volumetric flow rate, 

average velocity, Manning roughness coefficient, or channel bottom 
slope, if given adequate information about a reach of open channel flow 

  
 Be able to use the Manning Equation, with an iterative procedure, to 

calculate normal depth for specified volumetric flow rate, channel bottom 
slope, channel shape & size, and Manning roughness coefficient for a 
reach of open channel flow  

 
 Be able to make Manning Equation calculations in either U.S. units or S.I. 

units 
 

 Be able to calculate the Manning roughness coefficient for a natural 
channel based on descriptive information about the channel. 
 

 Be able to use the Manning Equation to make calculations for the flow of 
water in a circular pipe either flowing full or flowing half full. 

 
 Be able to carry out a variety of calculations for full or partially full flow 

of water under gravity in a circular pipe site. 
 
 
 
 
3.      Topics Covered in this Course 
 
 
I.  Open Channel Flow vs Pipe Flow 
 
II.  Classifications of Open Channel Flow 
 
 A.  Laminar or Turbulent Flow 
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 B.  Steady State or Unsteady State Flow 
C.  Supercritical, Subcritical or Critical Flow 
D.  Uniform or Nonuniform flow 

 
III.  Manning Equation/Uniform Open Channel Flow Basics 
 
 A.  The Manning Equation 
 B.  Manning Roughness Coefficient 
 C.  Reynolds Number 
 D.  Hydraulic Radius 
 E.  The Manning Equation in S.I. Units 

F.  The Manning Equation in Terms of V Instead of Q 
 
IV.  Manning Equation Calculations for Manmade Channels 
 
 A.  The Easy Parameters to Calculate with the Manning Equation 
 B.  The Hard Parameter to Calculate - Determination of Normal Depth 
 C.  Circular Pipes Flowing Full 
 D.  Circular Pipes Flowing Partially Full 
 
V.   Uniform Flow Calculations for Natural Channels 
 
 A.  The Manning Roughness Coefficient for Natural Channels 
 B.  Manning Equation Calculations 
 
VI.  Summary 
 
VII.  References and Websites 
 
 
 

4.    Open Channel Flow vs Pipe Flow 
 
The term “open channel flow” is used to refer to flow with a free surface at 
atmospheric pressure, in which the driving force for flow is gravity.  Pipe flow, 
on the other hand is used to refer to flow in a closed conduit under pressure, in 
which the primary driving force is typically pressure.  Open channel flow occurs 
in natural channels, such as rivers and streams and in manmade channels, as for 
storm water, waste water and irrigation water.  This course is about open 
channel flow, and in particular, about uniform open channel flow.  The next 
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section covers several different classifications of types of open channel flow, 
including clarification of the difference between uniform and nonuniform open 
channel flow. 

 

 

 

5.  Classifications of Open Channel Flow 
 
A.  Turbulent and Laminar Flow:  Description of a given flow as being either 
laminar or turbulent is used for several fluid flow applications (like pipe flow 
and flow past a flat plate) as well as for open channel flow.  In each  of these 
fluid flow applications a Reynolds number is used for the criterion to determine 
whether a given flow will be laminar or turbulent.   For open channel flow a 
Reynolds number below 500 is typically used as the criterion for laminar flow, 
while the flow will typically be turbulent for a Reynolds number greater than 
12,500.  For a flow with Reynolds number between 500 and 12,500, other 
conditions, like the upstream channel conditions and the roughness of the 
channel walls will determine whether the flow is laminar or turbulent. 
 
 
Background on Laminar and Turbulent Flow:  Osborne Reynolds reported in the 
late 1800s on experiments that he performed observing the difference between 
laminar and turbulent flow in pipes and quantifying the conditions for which 
each would occur.  In his classic experiments, he injected dye into a transparent 
pipe containing a flowing fluid.  He observed that the dye flowed in a streamline 
and didn’t mix with the rest of the fluid under some conditions, which he called 
laminar flow.  Under other conditions, however, he observed that the net 
velocity of the fluid was in the direction of flow, but there were eddy currents in 
all directions that caused mixing of the fluid. Under these turbulent flow 
conditions, the entire fluid became colored with the dye.  The figure below 
illustrates laminar and turbulent open channel flow. 
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 Figure 3.  Dye injection into laminar & turbulent open channel flow 
 
 
Laminar flow, sometimes also called streamline flow, occurs for flows with high 
fluid viscosity and/or  low velocity.  Turbulent flow takes place for flows with 
low fluid viscosity and/or high velocity. 
 

More discussion of the Reynolds number and its calculation for open channel 
flow are given in Section 6 of this course.  For most practical cases of water 
transport in either manmade or natural open channels, the Reynolds number is 
greater than 12,500, and thus the flow is turbulent.  One notable exception is 
flow of a thin liquid layer on a large flat surface, such as rainfall runoff from a 
parking lot, highway, or airport runway.  This type of flow, often called sheet 
flow, is typically laminar. 

 

B.  Unsteady State and Steady State Flow:  The concepts of steady state and 
unsteady state flow are used for a variety of fluid flow applications, including 
open channel flow.  Steady state flow is taking place whenever there are no 
changes in velocity pattern or magnitude with time at a given channel cross 
section.  When unsteady state flow is present, however, there are changes of 
velocity with time at any given cross section in the flow.  Steady state open 
channel flow takes place when a constant flow rate of liquid is passing through 
the channel.  Unsteady state open channel flow takes place when there is a 
changing flow rate, as for example in a river after a rainstorm.  Steady state or 
nearly steady state conditions are present for many practical open channel flow 
situations.  The equations and calculations presented in this course are all for 
steady state flow. 
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C.  Critical, Subcritical, and Supercritical Flow:  Any open channel flow 
must be one of these three classifications: supercritical, subcritical or critical 
flow.  The interpretation of these three classifications of open channel flow, and 
the differences among them, aren’t as obvious or intuitive as the interpretation 
and the differences for the other classifications (steady and unsteady state, 
laminar and turbulent, and uniform and non-uniform flow).  Some of the 
behaviors for subcritical and supercritical flow and the transitions between them 
may not be what you would intuitively expect.  Supercritical flow takes place 
when there is a relatively high liquid velocity and relatively shallow depth of 
flow.  Subcritical flow, as one might expect, takes place when there is a 
relatively low liquid velocity and relatively deep flow.  The Froude number (Fr 
= V/(gl)1/2)  provides information about whether a given flow is supercritical, 
subcritical or critical.  For subcritical flow, Fr is less than one; for supercritical 
flow, it is greater than one; and for critical flow it is equal to one.  Further 
details about subcritical, supercritical and critical flow are beyond the scope of 
this course. 
 
 
D.  Non-Uniform  and Uniform Flow:  Uniform flow will occur in a reach of 
open channel whenever there is a constant flow rate of liquid passing through 
the channel, the bottom slope is constant, the channel surface roughness is 
constant, and the cross-section shape & size are constant.  Under these 
conditions, the depth of flow and the average velocity of the flowing liquid will 
remain constant in that reach of channel.  Non-uniform flow will be present for 
reaches of channel where there are changes in the bottom slope, channel surface 
roughness, cross-section shape, and/or cross-section size.  Whenever the bottom 
slope, surface roughness, and channel cross-section shape and size become 
constant in a downstream reach of channel, another set of uniform flow 
conditions will occur there.  This is illustrated in Figure 4. 
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                    Figure 4. Non-uniform and Uniform Open Channel Flow 
 
 

 

6.     Manning Equation/Uniform Open Channel Flow Basics 
 
As just described above, uniform open channel flow takes place in a channel 
reach that has constant channel cross-section size and shape, constant surface 
roughness, and constant bottom slope, with a constant volumetric flow rate of 
liquid passing through the channel.  These conditions lead to flow at a constant  
depth of flow and constant liquid velocity, as illustrated in Figure 2. 

 

A.  The Manning Equation is an empirical equation that was developed by the 
French engineer, Philippe Gauckler in 1867.  It was redeveloped by the Irish 
engineer, Robert Manning, in 1890.  Although this equation is also known as the 
Gauckler-Manning equation, it is much more commonly known simply as the 
Manning equation or Manning formula in the United States.  This formula gives 
the relationship among several parameters of interest for uniform flow of water 
in an open channel.  Not only is the Manning equation empirical, it is also a 
dimensional equation.  This means that the units to be used for each of the 
parameters must be specified for a given constant in the equation.  For 
commonly used U.S. units the Manning Equation and the units for its parameters 
are as follows: 
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   Q = (1.49/n)A(Rh
2/3)S1/2     (1) 

 
Where:    
 

 Q = the volumetric flow rate of water passing through the channel reach 
in ft3/sec. 

 
  n = the Manning roughness coefficient for the channel surface ( a 

dimensionless, empirical constant). 
 

 A = the cross-sectional area of water normal to the flow direction in ft2. 
 

 Rh = the hydraulic radius  (Rh =  A/P).  (A is the cross-sectional area as 
defined just above in ft2 and P is the wetted perimeter of the cross-
sectional area of flowing water in ft. 

 
 S = the bottom slope of the channel* in ft/ft (dimensionless). 

    

  
*S is actually the slope of the energy grade line.  For uniform flow, however, the 
depth of flow is constant and the velocity head is constant, so the slope of the 
energy grade line is the same as that of the hydraulic grade line and is the same 
as the slope of the water surface, which is the same as the channel bottom slope.  
For convenience, the channel bottom slope is typically used for S in the 
Manning Equation. 

 

B.  Manning Roughness Coefficient, n,   is a dimensionless, empirical    
constant, as just described above.  Its value depends on the nature of the channel 
and its surfaces.  There are tables with values of n for various channel types and 
surfaces in many handbooks and textbooks, as well as at several online sources.  
Table 1 below is a typical table of this type.  This table gives n values for several 
manmade open channel surfaces.  Values of n for natural channels will be 
addressed in Section 8. 
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         Table 1.  Manning Roughness Coefficient, n, for Selected Surfaces 

 

 

Source for n values in Table 1:  http://www.engineeringtoolbox.com 
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C.  The Reynolds number for open channel flow is defined as Re = VRh/, 
where Rh is the hydraulic radius, as defined above, V is the liquid velocity (= 
Q/A), and  and  are the density and viscosity respectively of the flowing fluid.  
Since the Reynolds number is dimensionless, any consistent set of units can be 
used for RhV, and .  If done properly, all of the units will cancel out, 
leaving Re dimensionless. 
 
The flow must be in the turbulent regime in order to use the Manning equation 
for uniform open channel flow.  It is fortunate that nearly all practical instances 
of water transport through an open channel have Re greater than 12,500, in 
which case the flow is turbulent,and the Manning equation can be used. 
 
The Manning equation is specifically for the flow of water, and no water 
properties are required in the equation.  In order to calculate the Reynolds 
number to check on whether the flow is turbulent, however, values of density 
and viscosity for the water in question are needed.  Tables of density and 
viscosity values for water as a function of temperature are available in many 
textbooks, handbooks, and websites.  Table 2 below gives values for density and 
viscosity of water from 32oF to 70oF. 
 

               Table 2.  Density and Viscosity of Water 
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Example #1:  Water at 60oF is flowing 1.2 feet deep in a 3 foot wide rectangular 
open channel, as shown in the diagram below.  The channel is made of concrete 
(made with wooden forms) and has a bottom slope of 0.0008.  Determine 
whether the flow is laminar or turbulent. 

 

 

 

 

Solution:  Based on the problem statement, this will be uniform flow.  The flow 
is probably turbulent, however the velocity is needed in order to calculate the 
Reynolds number.  Hence we will assume that the flow is turbulent, use the 
Manning equation to calculate Q and V.  Then Re can be calculated to check on 
whether the flow is indeed turbulent. 

The parameters needed for the right side of the Manning equation are as follows: 

From Table 1, for concrete made with wooden forms:  n  =  0.015 

A  =  (1.2)(3)  =  3.6 ft2   

P  =  3 +  (2)(1.2)  =  5.4 ft 

Rh  =   A/P  =  3.6/5.4  =  0.6667 ft 

S  =  0.0008  (given in problem statement) 

 

Substituting into the Manning equation  (Q = (1.49/n)A(Rh
2/3)S1/2) : 
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Q  =  1.49/0.015)(3.6)(0.66672/3)(0.00081/2)  =  7.72 cfs 

 

Now the average velocity, V, can be calculated: 

 V  =  Q/A  =  7.72/3.6  =  2.14 ft/sec 

 

From Table 2, for 60oF:    =  1.938 slugs/ft3  and   =  2.334 x 10-5 lb-sec/ft2  

Substituting into  Re = VRh/ :   

 Re  =  (1.938)(2.14)(0.6667)/2.334 x 10-5  =  118,470 

Since Re  >  12,500, this open channel flow is turbulent 

 

D.  Hydraulic Radius is a parameter that must be calculated for various channel 
shapes in order to use the Manning Equation.  Some common cross-sectional 
shapes used for open channel flow are rectangular, trapezoidal triangular, 
circular, and semicircular.  Formulas for the hydraulic radius for each of these 
channel shapes will now be presented. 
 
A rectangular channel allows easy calculation of the hydraulic radius.  The 
bottom width will be represented by b and the depth of flow will be represented 
by y, as shown in the Figure 5 below. 
 
 
 

   
 
  Figure 5.  Rectangular Open Channel Cross-Section 
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The area and wetted perimeter will be as follows: 

 
 A  =  by   P  =  2y + b 
 

Then  Rh  =  A/P,  or: 
 
 For a rectangular channel:     Rh  =  by/(2y + b)             (2) 

 
 
A trapezoidal cross-section is used for some manmade open channels and can 
be used as an approximation of the cross-sectional shape for some natural 
channels.  Figure 6 shows the parameters typically used to describe the size and 
shape of a trapezoidal channel. 
 

 
 

Figure 6.  Trapezoidal Open Channel Cross-section 
 
 
The channel bottom width and the water depth are represented by b and y, the 
same as with the rectangular channel.  Additional parameters for the trapezoidal 
channel shape are:  

 

 B, the water surface width; 

  l, the wetted length of the sloped side; 

 , the angle of the sloped side of the channel from the vertical; and  



15 
 

 z, the channel side slope expressed as horiz:vert = z:1. 

 

The size and shape of a trapezoidal channel are often specified with the bottom 
width, b, and the side slope, z.  The hydraulic radius for flow in a trapezoidal 
open channel can be expressed in terms of y, b, and z, as follows: 

i) The cross-sectional area of flow, A, is the area of the trapezoid in Figure 4: 

   A = y(b + B)/2  =  (y/2)(b + B) 

From Figure 6, it can be seen that the surface width, B, is greater than the 
bottom width, b, by zy at each end, or: 

  B = b + 2zy 

Substituting for B into the equation for A gives: 

  A = (y/2)(b + b + 2zy)   =  (y/2)(2b + 2zy) 

Simplifying gives:   A  =  by  +  zy2     

As shown in Figure 6, the wetted perimeter of the cross-sectional area of flow is 

   P  =  b  +  2l   

By Pythagoras’ Theorem for the triangle at each end of the trapezoid: 

  l2  =  y2  +  (yz)2    or   l  =  [y2  +  (yz)2]1/2   

Substituting for l into the equation for P and simplifying gives: 

   P = b + 2y(1 + z2)1/2    

Substituting for A and P in Rh = A/P  gives: 

For a trapezoidal open channel:  Rh  =  (by + zy2)/[b + 2y(1 + z2)1/2]     (3) 
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Example #2:  Determine the hydraulic radius of water flowing 1.5 ft deep in a 
trapezoidal open channel with a bottom width of 2 ft and side slope of    
horiz:vert = 3:1. 

 

Solution:  From the problem statement, y = 1.5 ft,  b = 2 ft, and z = 3.  
Substituting these values into the expression for hydraulic radius gives: 

Rh  =  (2*1.5 + 3*1.52)/[2 + 2*1.5(1 + 32)1/2]  =  0.849 ft 

This type of calculation can conveniently be done using an Excel spreadsheet 
like the simple one shown in the screenshot in Figure 7 below.  This particular 
spreadsheet is set up to allow user entry of the channel bottom width, the depth 
of flow, and the side slope expressed as z.  The spreadsheet then calculates the 
cross-sectional area of flow, A, the wetted perimeter, P,  and the hydraulic 
radius, Rh, for the trapezoidal channel.  The equations shown at the bottom of 
the worksheet are the same as those presented and discussed in this course. 
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Figure 7.  Hydraulic Radius Calculator Spreadsheet 

 

The triangular open channel cross-sectional shape is the third one that we’ll be 
considering.  Figure 8 below shows the parameters typically used to specify the 
size and shape of a triangular channel.  They are:   

 B, the surface width of the water in the channel 

 y, the water depth in the channel, measured from the triangle vertex 
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 l, the wetted length of the sloped side; and 

 z, the channel side slope expressed as horiz:vert = z:1. 

 

 

 

Figure 8.  Triangular Open Channel Cross-Section 
 
 

For a triangular open channel, it‘s convenient to have the hydraulic radius 
expressed in terms of y and z, which can be done as follows: 
 
The area of the triangle in Figure 8, which represents the area of flow is:   
A = (1/2)By,  but as shown in the figure, B = 2zy.  Substituting for B in the 
equation for A and simplifying gives: 
 
   A = y2z   
 
Also from Figure 8, it can be seen that the wetted perimeter is:  P = 2l. 
 
Substituting     l  =  [y2  +  (yz)2]1/2   (as shown above for the trapezoid), and 
simplifying gives: 
 

P  =  2[y2(1 + z2)]1/2  

Substituting for A and P in Rh = A/P  gives: 

For a trianglular open channel:    Rh  =  y2z/{2[y2(1 + z2)]1/2 }  (4) 
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Circular pipes are used for open channel (gravity) flow for applications like 
storm sewers, sanitary sewers, and circular culverts.  These pipe typically flow 
only partially full most of the time, but the full flow scenario is often used for 
hydraulic design.  Hydraulic radius expressions for the full flow and half full 
cross-sections will be developed here.  There will be additional discussion of 
partially full pipe flow in Section 7. 
 
Figure 9 shows a diagram for a pipe flowing full and a pipe flowing half full.  
The only parameters needed for either of these cases are the diameter and the 
radius of the pipe. 
 
 

 
 
 

Figure 9.  Circular and semicircular Open Channel Cross-Sections 
 

 
 
The hydraulic radius for a circular pipe of diameter D, flowing full, can be 
calculated as follows: 
 
 The cross-sectional area of flow is:  A  =  D2/4   
 
 The wetted perimeter is:  P  =  D 
 
 The hydraulic radius is:  Rh  =  A/P  =  (D2/4)/(D) 
 
Or simply (for a pipe flowing full):     Rh  =  D/4                              (5) 
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For the semicircular shape of a pipe flowing exactly half full, the area, A, and 
the wetted perimeter, P, will each be half of the values for the full pipe flow.  
Thus the hydraulic radius will remain the same, so 

(for a pipe flowing half full):   Rh  =  D/4                                (6) 
 
 

E.  The Manning Equation in SI Units is the same as that for U.S. units except 
that the constant is 1.00 instead of 1.49: 

Q = (1.00/n)A(Rh
2/3)S1/2     (7) 

 
Where:    
 

 Q = the volumetric flow rate of water passing through the channel reach 
in m3/s. 

 
  n = the Manning roughness coefficient for the channel surface ( a 

dimensionless, empirical constant). 
 

 A = the cross-sectional area of water normal to the flow direction in m2. 
 

 Rh = the hydraulic radius in m  (Rh =  A/P).  (A is the cross-sectional area 
as defined just above in m2 and P is the wetted perimeter of the cross-
sectional area of flowing water in m. 

 
 S = the bottom slope of the channel* in m/m (dimensionless). 

 
 
F.  The Manning Equation in terms of Average Velocity:  For some 
calculations, it is better to have the Manning Equation expressed in terms of 
average velocity, V, instead of in terms of volumetric flow rate.  The definition 
of average velocity is V  =  Q/A, where Q and A are as previously defined.  
Substituting Q = VA into the Manning equation as given in Equation (1), and 
solving for V gives the following form of the Manning equation.  

For U.S. units:  V = (1.49/n)(Rh
2/3)S1/2     (8) 
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For S.I. units, the constant is 1.00 instead of 1.49, giving: 

For S.I. units:  V = (1.00/n)(Rh
2/3)S1/2     (9) 

 

7.     Manning Equation Calculations for Manmade Channels 

 

A. The Easy Parameters to Calculate with the Manning Equation:  Several 
different parameters can be the “unknown” to be calculated with the Manning 
equation, based on known values for enough other parameters.  If Q and V, S, or 
n is the unknown parameter to be calculated, and enough information is known 
to calculate the hydraulic radius, then the solution involves simply substituting 
values into the Manning equation and solving for the desired unknown 
parameter.  These four parameters are thus the “easy parameters to calculate.”  
This type of Manning equation calculation is illustrated with several examples 
here.  Then in the next section, we’ll take a look at the hard parameter to 
calculate, normal depth. 

 

Example #3:  Use the Manning equation to determine the volumetric flow rate 
and average velocity of water flowing 0.9 m deep in a trapezoidal open channel 
with bottom width equal to 1.2 m and side slope of horiz:vert = 2:1.  The 
channel is concrete poured with steel forms and its bottom slope is 0.0003. 

 

Solution:  The hydraulic radius can be calculated from the specified information 
(y = 0.9 m, b = 1.2 m, & z = 2) using the formula for a trapezoidal channel as 
follows: 

Rh  =  (by + zy2)/[b + 2y(1 + z2)1/2]      

        =  (1.2*0.9 + 2*0.92)/[1.2 + 2*0.9(1 + 22)1/2] 
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 Rh  =  0.517 m    (also:  A = by + zy2  =  1.2*0.9 + 2*0.92  =  2.70 m2   

Substituting Rh and A into Equation (1) along with S = 0.0003 (given) and          

n = 0.011 (from Table 1) gives: 

Q = (1.00/n)A(Rh
2/3)S1/2   =   (1.00/0.011)(2.70)(0.5172/3)(0.00031/2)  

  Q  =  2.74 m3/s   

Now the average velocity, V, can be calculated from V = Q/A  = 2.74/2.70 m/s 

  V  =  1.01 m/s 

 

This type of calculation is also easy to make with an Excel spreadsheet, like the 
one shown in the Figure 8 screenshot on the next page. 

Example #4:  What would be the required slope for a 15 inch diameter circular 
storm sewer made of centrifugally spun concrete, if it needs to have an average 
velocity of at least 3.0 ft/sec when it’s flowing full? 
 
Solution:  For the 15” diameter sewer, Rh = D/4  =  (15/12)/4  =  0.3125 ft.  
From Table 1, for centrifugally spun concrete, n = 0.013.  Substituting these 
values for Rh and n, along with the given value of V = 3.0 ft/sec, into Equation 
(8) and solving for S gives: 
 
 S = {(0.013)(3.0)/[1.49(0.3125)2/3]}2  =  0.003231  =  S 
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Figure 10.  A Spreadsheet for Q & V in a Trapezoidal Channel 
 
 

  
 

Determination of the required Manning roughness coefficient, n, for a specified 
flow rate or velocity, bottom slope, and adequate information to calculate the 
hydraulic radius, would be a less common calculation, but would proceed in a 
manner very similar to Example #3 and Example #4. 

 

 

B.  The Hard Parameter to Calculate - Determination of Normal Depth:  
When the depth of flow, y, is the unknown parameter to be determined using the 
Manning equation, an iterative calculation procedure is often required.  This is 
because an equation with y as the only unknown can typically be obtained, but 
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the equation usually can’t be solved explicitly for y, making this “the hard 
parameter to calculate.”   The depth of flow for a given flow rate through a 
channel reach of known shape size & material and known bottom slope is called 
the normal depth, and is sometimes represented by the symbol, yo.   

The typical situation requiring determination of the normal depth, yo, will have 
specified values for the flow rate, Q, the Manning roughness coefficient, n, and 
channel bottom slope, S, along with adequate channel size and shape 
information to allow A and Rh to be expressed as functions of yo. 

The approach for calculating the normal depth, yo, for a situation as described 
above, is to rearrange the Manning equation to: 

ARh
2/3  =  Qn/(1.49S1/2)       (10) 

The right side of this equation will be a constant and the left side will be an 
expression with yo as the only unkown.  The next couple of examples illustrate 
calculation of yo using an iterative calculation with Equation (10). 

 

Example #5:  Determine the normal depth for a water flow rate of 20 ft3/sec, 
through a rectangular channel with a bottom slope of 0.00025, bottom width of 4 
ft, and Manning roughness coefficient of 0.012. 

Solution:  Substituting the expressions for A and Rh for a rectangular channel 
into the left hand of Equation (10) and substituting the given values for Q, n, and 
S into the right side, gives: 

 4yo(4yo/(4 + 2yo))2/3  =  (20)(0.012)/[1.49 (0.000251/2)]  =  10.187   

This equation has yo as the only unknown.  The equation can’t be solved 
explicitly for yo, but it can be solved by an iterative (trial and error) process as 
illustrated in the Excel spreadsheet screenshot in Figure 11 on the next page.  
The spreadsheet screenshot shows the solution to be:  yo  =  2.40 ft, accurate to 3 
significant figures.  Note that this type of iterative calculation can also be 
accomplished with Excel's Goal Seek or Solver tool. 
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Figure 11.  A Spreadsheet for Normal Depth in a Rectangular Channel 

 

Example #6:  Determine the normal depth for a water flow rate of 20 ft3/sec, 
through a trapezoidal channel with a bottom slope of 0.00025, bottom width of 4 
ft, side slope of horiz:vert = 2:1, and Manning roughness coefficient of 0.012. 

Solution:  The values of Q, n, & S are the same as for Example #5, so the right 
hand side of Equation (10) will remain the same at 10.187.  The left hand side 
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will be somewhat more complicated with the expression for Rh as a function of 
yo for a trapezoid.  Equation (10) for this calculation is: 

 (4yo + 2yo
2){(4yo + 2yo

2)/[4 + 2yo(1 + 22)1/2]}2/3  =  10.187 

The iterative calculations leading to yo = 1.49 ft are shown below.  The solution 
is yo = 1.49 ft, because 10.228 is closer to the target value of 10.187, than the  
value of 10.094 for yo = 1.48 or 10.363 for yo = 1.50. 

 

 

 

C.  Circular Pipes Flowing Full :  Because of the simple form of the equations 
for hydraulic radius and cross-sectional area as functions of the diameter for a 
circular pipe flowing full ( Rh = D/4  and  A = D2/4 ), the Manning equation 
can be conveniently used to calculate Q and V, D, S, or n if the other parameters 
are known.  Several useful forms of the Manning equation for a circular pipe 
flowing full under gravity are: 

  Q = (1.49/n)(D2/4)((D/4)2/3)S1/2             (11) 

V = (1.49/n)((D/4)2/3)S1/2                       (12) 

D  =   4[Vn/(1.49S1/2)]3/2       (13) 

D  =  1.33Qn/S1/2         (14) 

 

Note that these four equations are for the U.S. units previously specified.  For 
S.I. units, the 1.49 should be replaced with 1.00 in the first three equations.  In 
Equation (14), 1.33 should be replaced with 0.893. 
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Hydraulic design of storm sewers is typically based on full pipe flow using 
equations (11) through (14). 

 

Example #7:  What would be the flow rate and velocity in a 30 inch diameter 
storm sewer that has n = 0.011 and slope = 0.00095, when it is flowing full 
under gravity? 

Solution:  Substituting the given values of n, D, and S into Equation (12) gives: 

 V  =  (1.49/0.011)[((30/12)/4)2/3](0.000951/2)  =  3.052 ft/sec  =  V 

Then Q can be calculated from Q  =  VA  =  V(D2/4) 

 Q  =  (3.05 ft/sec)[(2.52)/4 ft2]  =  15.0 cfs  =  Q 

 

D.  Circular Pipes Flowing Partially Full :  Although hydraulic design of 
storm sewers is typically done on the basis of the circular pipe flowing full, a 
storm sewer will often flow partially full due to a storm of intensity less than the 
design storm.  Thus, there is sometimes interest in calculations for partially full 
pipe flow, such as the flow rate or velocity at a given depth of flow or the depth 
of flow for a given velocity or flow rate.   

Figure 12 shows the depth of flow, y, and the diameter, D, as used for partially 
full pipe flow calculations. 
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Figure 12.  Depth of flow, y, and Diameter, D, for Partially Full Pipe Flow 

Graphical Solution:  One common way of handling partially full pipe flow 
calculations is through the use of a graph that correlates V/Vfull and Q/Qfull to 
y/D, as shown in Figure 13.    

 

 

Figure 13. Flow Rate and Velocity Ratios in Pipes Flowing Partially Full 
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If values of D, Vfull and Qfull are known or can be calculated, then the velocity, 
V, and flow rate, Q, can be calculated for any depth of flow, y, in that pipe 
through the use of figure 13. 

 

Example #8:  What would be the velocity and flow rate in the storm sewer of 
Example #7 (D = 30”, n = 0.011, S = 0.00095) when it is flowing at a depth of 
12 inches? 

 

Solution:  From the solution to Example #7:  Vfull = 3.052 ft/sec and Qfull = 15.0 
cfs.  From the given y and D values:  y/D = 12/30  =  0.40.   From Figure 13, for 
y/D = 0.40,  V/Vfull = 0.70 and Q/Qfull = 0.25. 

 V  =  (V/Vfull)Vfull  =  (0.70)(3.052) ft/sec  =  2.14 ft/sec  =  V 

 Q  =  (Q/Qfull)Qfull  =  (0.25)(15.0) cfs  =  Q 

 

Background on Equations for Partially Full Pipe Flow:  There are equations 
available to calculate the A and P for any depth of flow in a circular pipe (as 
presented below).  These equations allow calculation of the hydraulic radius for 
partially full pipe flow.  If the hydraulic radius calculated by this method is used 
with the Manning equation, using the full pipe value for n, the calculated flow 
rate and velocity don’t agree well with experimental measurements.  This was 
observed by T.R  Camp in 1946 (reference #3).  Camp developed a method that 
uses Manning roughness, n, to be variable as a function of y/D, which makes 
calculated results agree with experimental measurements.  Camp is the original 
source for a diagram like Figure 13, which gives V/Vfull, Q/Qfull, and n/nfull as 
functions of y/D.  The graphs in Figure 13 were created using values read from a 
similar graph in Steel & McGhee (reference # 2).   

 

Equations for less than half full pipe flow:  The diagram and equations below 
summarize the calculation of A, P, & Rh for a pipe flowing less than half full 
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  Figure 14.  Diagram and Equations for Less Than Half Full Pipe Flow 

 

For known pipe diameter, D, and depth of flow, y, the equations above allow 
calculation of cross-sectional area of flow, A, and wetted perimeter, P.  Then the 
hydraulic radius can be calculated from Rh = A/P, for a pipe flowing less than 
half full. 

 

Equations for more than half full pipe flow:  The diagram and equations 
below summarize the calculation of A, P, & Rh for a pipe flowing more than half 
full: 
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  Figure 15.  Diagram and Equations for More Than Half Full Pipe Flow 

 

Similarly, this set of equations allow calculation of A, P, and Rh if the pipe 
diameter and depth of flow are known for more than half full pipe flow. 

 

Equation for n/nfull:  As discussed above, in addition to the value of the 
hydraulic radius, the value of Mannings roughness coefficient is needed at the 
given y/D value in order to proceed with a Manning equation calculation. 

The following equation can be used to calculate n/nfull as a function of y/D: 
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The source for this equation is:  Goswami, I., Civil Engineering All-in-One PE 
Exam Guide Breadth and Depth, 2nd Ed, McGraw-Hill, NY, NY, 2012, 
Equation 303.32 

These equations provide all of the tools necessary to make Manning equation 
calculations for partially full pipe flow.  With all of the equations and all of the 
steps required, Excel spreadsheets are ideal for this type of calculation.  For a 
more detailed discussion of Manning equation calculations for partially full pipe 
flow, and the use of spreadsheets for those calculations, see reference #6 at the 
end of this course. 

 

8.     Uniform Flow Calculations for Natural Open Channels 
 

The Manning equation is used a lot for natural channel flow calculations, as well 
as with the manmade channel examples we’ve already considered.  One of the 
primary differences in using the Manning equation for natural channel flow is 
the lack of precision in estimation of Manning roughness coefficient values. 

 

A.  The Manning Roughness Coefficient:  There are several approaches 
available for determining the Manning roughness coefficient, n, for flow in a 
natural open channel, including  i) experimental determination of n;  ii) use of a 
table or tables that give maximum, minimum and average n values for a variety 
of channel descriptions; and  iii) a method devised by Cowan (reference #4) that 
uses a base n value determined by the general type of channel and modifies that 
base n value based on various descriptors of the channel.  A bit more about each 
of these methods follows. 
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i)  Experimental determination of the Manning roughness coefficient can be 
accomplished by measuring the depth of flowing water, the size and shape of the 
channel cross-section, and the volumetric flow rate for a given reach of channel.  
These measured values can be used to calculate an empirical value for n that can  
then be used for subsequent Manning equation calculations for that reach of 
channel. 

Example #9:  Calculate the Manning roughness coefficient, n, for a reach of 
river channel that has a bottom slope of 0.00028, with a cross-section that can be 
approximated as a trapezoid with bottom width equal to 8 ft and side slopes of 
horiz:vert = 4:1, if the flow rate has been estimated to be 75 cfs  in that reach 
when the depth of water is 3 ¼ ft. 

Solution:  The Manning equation can be solved for n to give: 

  n = (1.49/Q)A(Rh
2/3)S1/2    

The area and hydraulic radius of the trapezoidal cross-section are calculated as 
follows: 

 A  =  by + zy2  =  8*3.25 + 4*3.252   =  68.25 ft2  

 P =  b + 2y(1 + z2)1/2  =  8 + 2*3.25(1 + 42)1/2  = 34.80 ft 

 Rh = A/P = 68.25/34.80  =  1.96 ft 

Substituting values into the above equation for n gives: 

 n = (1.49/75)(68.25)(1.962/3)(0.000281/2)  =  0.0355  =  n 

ii)  There are Tables of n values in many textbooks and handbooks, as well as 
on websites.  The table on the next two pages is an example from the Indiana 
Department of Transportation Design Manual (website ref # 1 ).  Similar tables 
of n values are available on many state agency websites.  The table below from 
the Indiana DOT Design Manual gives minimum, maximum, and normal values 
of the Manning roughness coefficient for a range of excavated or dredged and 
natural stream channels. 
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Table 3.  Manning Roughness Coefficient, n, for Natural Channels 
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Example #10:   What are the minimum, maximum, and normal values of the 
Manning roughness coefficient, n, for a minor mountain stream with no 
vegetation in the channel, banks usually steep, trees and brush along banks 
submerged at high stages, and cobbles with large boulders on the bottom, based 
on Table 3 below, from the Indiana DOT Design Manual? 

 

Solution:  From Table 3, the values of n for the described natural channel are:  
nmin = 0.040,  nmax = 0.07,  nnormal = 0.050  

 

iii)  The Cowan procedure was first presented in reference #4.  There is also a 
good description of this method in McCuen (reference #5).  This procedure uses 
a base n value with several terms added to it based on characteristics of the 
channel, as described below. 

1. The Base Roughness Coefficient, n1, is selected from the 
following based on the character of the channel: 

 Channels in earth:            n1  =  0.02 

 Channels cut into rock:        n1  =  0.025 

 Channels in fine gravel:      n1  =  0.024 

 Channels in coarse gravel:    n1  =  0.028 

 

2. The value for the Irregularity Modifier, n2, is selected from the 
following based on the degree of irregularity: 

 Smooth (surface comparable to the best attainable for the 
materials involved)    n2 = 0.000 

 Minor (good dredged channels; slightly eroded or scoured side 
slopes of canals)               n2 = 0.005 
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 Moderate (fair to poor deredged channels; moderately sloughed 
or eroded canal side slopes)    n2 = 0.010 

 Severe (badly sloughed banks of natural streams; badly eroded 
or sloughed sides of canals or drainage channels; unshaped, 
jagged and irregular surfaces of channels excavated in rock                
n2 = 0.020 

 

3. The value for the Cross Section Modifier, n3, is selected from the 
following based on the character of variations in size & shape of cross 
section: 

 Change in size or shape occurs gradually  n3 = 0.000 

 Large & small sections alternate occasionally or shape changes 
cause occasional shifting of main flow from side to side            
n3 = 0.005 

 Large & small sections alternate frequently or shape changes 
cause frequent shifting of main flow from side to side               
n3  =  0.010 – 0.020 

 

4. The value for the Obstruction Modifier, n4, is selected from the 
following based on the relative effect of obstructions: 

 Negligible  n4 = 0.000 

 Minor   n4 = 0.010 – 0.015 

 Appreciable  n4 = 0.020 – 0.030 

 Severe   n4 = 0.040 – 0.060 
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5. The value for the Vegetation Modifier, n5, is selected from the 
following based on the degree of vegetation effect on n: 

 Low   n5 = 0.005 – 0.010 

 Medium   n5 = 0.010 – 0.020 

 Appreciable  n5 = 0.020 – 0.050 

 Very High  n5 = 0.050 – 0.100 

 

6. The value for the Menadering Modifier, n6, is selected from the 
following based on the degree of meander: 

 Minor     ( meander length:straight length = 1.0 – 1.2 )     
n6 = 0.000  

 Appreciable     ( meander length:straight length = 1.2 – 1.5 )     
n6 = 0.15ns   

 Severe       ( meander length:straight length  > 1.5 )               
n6 = 0.30ns   

Where  ns  =  n1  +  n2  +  n3  +  n4  +  n5   

 

7. The value of the Manning Roughness Coefficient is calculated 
from: 

n  =  n1  +  n2  +  n3  +  n4  +  n5  +  n6     

 

Example #11:  Estimate the value for the Manning roughness coefficient for a 
channel in earth with minor irregularity, only gradual changes in size or shape, 
minor obstructions,  medium effect of vegetation, and minor meander. 



39 
 

Solution:  From the lists above:  n1  =  0.02,  n2  =  0.005,  n3  =  0.000,  n4  =  
0.010 – 0.015,  n5  =  0.010 – 0.020,  and n6  =  0.000.  Choosing the midpoint of 
the ranges given for n4 and n5  (n4  =  0.0125 and n5  =  0.015)  gives the 
following equation for n: 

 n  =  0.02  +  0.005  +  0.000  +  0.0125  +  0.015  +  0.000  

   n  =  0.0525 

 

B.  Manning Equation Calculations for natural channels are the same as for 
manmade channels except for less precision in estimating the Manning 
roughness coefficient and greater difficulty in determining the hydraulic radius 
if the channel cross-section isn’t a simple shape. 

 

Example #12:  A reach of channel of a minor stream on a plain is described as 
clean, winding, with some pools.  The bottom slope is fairly constant at 0.00031 
for this reach of channel.  Its cross-section over this reach can be approximated 
as a trapezoid with a bottom width of 6 feet and side slopes of horiz:vert = 3:1.  
Find the range of flow rates that could be expected for this reach of channel for a 
3.75 ft depth of flow, based on the maximum and minimum values of the 
Manning roughness coefficient from Table 3. 

Solution:  From the information given in the problem statement, b = 6 ft,  y = 
3.75 ft,  z = 3, and  S = 0.00031.  From Table 3 (for the channel description 
given in the problem statement),  nmin  =  0.033  and  nmax  =  0.045. 

From the equations for A, P, & Rh for a trapezoidal open channel: 

Rh  =  [(6)(3.75) + 3(3.752)]/[6 + (2)(3.75)(1  +  32)1/2 ]  =  2.177 ft 
 
 A  =  (6)(3.75) + 3(3.752)  =  64.69 ft2  
 
Substituting values into the Manning Equation [Q = (1.49/n)A(Rh

2/3)S1/2]  gives 
the following results: 
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For nmin (0.033):    Qmax  =  (1.49/0.033)(64.69)(2.1772/3)(0.00031)1/2   
 
   Qmax  =  86.4 ft3/sec 
 

For nmax (0.045):    Qmin  =  (1.49/0.045)(64.69)(2.1772/3)(0.00031)1/2   
 
   Qmin  =  63.3 ft3/sec 
 
 

 

9.      Summary 
 

Open channel flow, which has a free liquid surface at atmospheric pressure, 
occurs in a variety of natural and man-made settings.  Open channel flow may 
be classified as i) laminar or turbulent, ii) steady state or unsteady state, iii) 
critical, subcritical, or supercritical, and iv) uniform or nonuniform flow. Many 
practical cases of open channel flow can be treated as turbulent, steady state, 
uniform flow.  Several open channel flow parameters are related through the 
empirical Manning Equation, for turbulent, uniform open channel flow (Q = 
(1.49/n)A(Rh

2/3)S1/2).  The use of the Manning equation for uniform open 
channel flow calculations and for the calculation of parameters in the equation, 
such as cross-sectional area and hydraulic radius, are illustrated in this course 
through worked examples for manmade channels and for natural channels. 
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